skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bala, Kenny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is growing interest in government and industry to use numerical simulations for the Certification by Analysis of aircraft ice protection systems as a cheaper and more sustainable alternative to wind-tunnel and flight testing. The ice accretion on a cylindrical test article mounted under the wing of the National Research Council of Canada’s Convair-580 research aircraft during a flight test in Appendix O icing conditions was simulated using Ansys FENSAP-ICE™. A multishot simulation with input parameters averaged over the full icing period led to an increased level of liquid catch and ice accretion (by mass), and a broader ice profile when compared to a simulation with shot-averaged input parameters. An additional simulation using Ansys’ proprietary “extended icing data with vapor solution” method for calculating heat fluxes at the icing surface resulted in a broader ice profile in comparison to the classical technique, which produced a similar amount of accretion by mass. No combination of simulation settings, input parameters, and multishot methods tested in this study generated the same level of surface detail observed during flight testing, however, the amount of ice accretion, general location of ice features, and formation processes were in good agreement with the experimental results. 
    more » « less
  2. Hazardous atmospheric icing conditions occur at sub-zero temperatures when droplets come into contact with aircraft and freeze, degrading aircraft performance and handling, introducing bias into some of the vital measurements needed for aircraft operation (e.g., air speed). Nonetheless, government regulations allow certified aircraft to fly in limited icing environments. The capability of aircraft sensors to identify all hazardous icing environments is limited. To address the current challenges in aircraft icing detection and protection, we present herein a platform designed for in-flight testing of ice protection solutions and icing detection technologies. The recently developed Platform for Ice-accretion and Coatings Tests with Ultrasonic Readings (PICTUR) was evaluated using CFD simulations and installed on the National Research Council Canada (NRC) Convair-580 aircraft that has flown in icing conditions over North East USA, during February 2022. This aircraft is a flying laboratory, equipped with more than 40 sensors providing a comprehensive characterization of the flight environment including measurements of temperature, pressure, wind speed and direction, water droplet size and number distribution, and hydrometeor habits imagery. The flight tests of the platform included assessment of passive icephobic coatings as well as heat-assisted tests. Monitoring tools included visual high resolution, real-time inspection of the surface as well as detection of surface ice using NRC’s Ultrasonic Ice Accretion Sensors (UIAS). In this paper, we present the new platform and show some preliminary commissioning results of PICTUR, collected inflight under, predominantly, supercooled small droplets and supercooled large drops (SLD) icing conditions. The combination of the platform and the complementary sensors on the aircraft demonstrated an effective and unique technique for icing studies in a natural environment. 
    more » « less